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Correct identification of the origins of herbal medical products is becoming increasingly important in tandem
with the growing interest in alternative medicine. However, visual inspection of raw material is still the
most widely used method, and newer scientific approaches are needed. To develop a more objective
and efficient tool for discriminating herbal origins, particularly Korean and Chinese, we employed a nuclear
magnetic resonance (NMR)-based metabolomics approach combined with an orthogonal projections to
latent structure-discriminant analysis (OPLS-DA) multivariate analysis. We first analyzed the constituent
metabolites of Scutellaria baicalensis through NMR studies. Subsequent holistic data analysis with OPLS-
DA yielded a statistical model that could cleanly discriminate between the sample groups even in the
presence of large structured noise. An analysis of the statistical total correlation spectroscopy (STOCSY)
spectrum identified citric acid and arginine as the key discriminating metabolites for Korean and Chinese
samples. As a validation of the discrimination model, we performed blind prediction tests of sample origins
using an external test set. Our model correctly predicted the origins of all of the 11 test samples,
demonstrating its robustness. We tested the wider applicability of the developed method with three
additional herbal medicines from Korea and China and obtained very high prediction accuracy. The solid
discriminatory power and statistical validity of our method suggest its general applicability for determining
the origins of herbal medicines.
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INTRODUCTION

Metabolomics is an emerging -omics technology for examin-
ing the signature of low-molecular-weight compounds in a
system (1-3) and has been applied to a variety of fields, such
as plant science, toxicology, and clinical diagnosis (4-7). Just

as with other -omics approaches, the aims are to categorize or
classify samples and to understand the basic underlying
principles that contribute to the differences among them. From
a larger perspective, the metabolomic findings can be combined
with other -omics data to gain a more system-wide understand-
ing of the inter-relationships among genomes, proteomes, and
metabolomes (8, 9). Metabolomics employs analytical small-
molecule detection techniques, such as mass spectrometry and
nuclear magnetic resonance (NMR), as well as statistical
methods to analyze large amounts of data (10). Technical
advances in analytical instrumentation as well as more theoreti-
cal statistical analysis have contributed to the recent rapid
expansion of the metabolomics literature.

Plant metabolite profiling is a major metabolomics application
field, particularly because plants produce a wide variety of
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metabolites that are directly related to the economic and medical
values of plant-derived materials (11, 12). Among the various
factors that determine the quality of plant materials, their origins
have become increasingly important. For example, it was
recently reported that American and Asian ginseng roots have
contradictory effects on the vascular system (13) and acute
glycemia (14). Additionally, correct identification of plant or
agricultural products is a significant socioeconomic issue,
because their prices vary greatly depending upon the origins,
and there are many cases of malpractice and fraud. Convention-
ally, postmarket determination of the origins of plant materials
has been performed by visual or microscopic inspection of raw
material. However, this method can be subjective and cannot
be applied to powder samples. Therefore, there is a great need
for new approaches for the determination of the origins of plant
material.

Metabolomics has been applied to the classification of plant
materials, with principal component analysis (PCA) as the main
statistical approach (15-18). For example, the metabolite
changes occurring after viral infection, origin-classification of
chamomile flower, and grade differentiation of pine mushrooms
were studied with a combination of NMR and PCA methods.
However, these PCA-based approaches have limited practical
use, because PCA cannot assign the class membership of
unknown test samples, which is critical to the validation of

statistical models and, thus, to the practical application of
metabolomics. PCA is the basis of multivariate modeling and
is very useful for outlier detection and for finding patterns and
trends. However, as an unsupervised method, it rotates a data
matrix to find the maximum variations in the observations.
Therefore, the resulting principal components do not necessarily
align with the best predictive components for class separation
or, here, the origins. Moreover, the prediction of class member-
ship is better quantified using a supervised prediction and
regression method, because the misclassification error can be
approximated. Therefore, PCA is not the method of choice for
class differentiation, which is required for determination of plant-
sample origins.

A recently developed approach, orthogonal projections to
latent structure-discriminant analysis (OPLS-DA), is a type of
supervised classification and regression method that correlates
spectroscopic data to a certain property, such as class member-
ship, in this case, Korean or Chinese origin (19). The correlated
variation between the observations and the different class types
is found by rotating the components, so that the variation of
main scientific interest will be observed in the first component,
referred to as the predictive component, tp (scores) and pp

(loadings) (20). The additional component in the OPLS-DA
model is referred to the orthogonal (uncorrelated) component,
to and po. This separation of predictive and orthogonal compo-

Table 1

name 1H 13C assignment name 1H 13C assignment

baicalin 6.55 (s) 106.4 H-3 xylose 5.11 (d, J ) 3.8) H-1R
6.77 (s) 96.9 H-8 4.57 (d, J ) 9.5) H-1�
7.75 (d, J ) 7.9) 128.5 H-2′ 3.18 (m) Η-2
7.51 (t, J ) 7.9) 134.7 H-3′ arginine 3.72 (t, J ) 7.0) 56.8 ΗR
5.13 (d, J ) 8.0) 102.9 H-1′′ 3.22 (t, J ) 6.2) 42.9 Hδ
3.92 (d, J ) 7.7) 78.8 H-5′′ 1.90 (m) 30.0 H�

132.5 C-6 1.69 (m) 26.4 Hγ
153.8 C-7 159.4 Cε
152.5 C-9 176.2 COOH
167.3 C-2 alanine 1.48 (d, J ) 7.2) H�
185.4 C-4 3.73 (q, J ) 7.2) 53.2 HR
108.6 C-10 177.6 COOH
132.5 C-1′ valine 1.01 (d, J ) 7.0) Hγ
177.4 C-6′′ 2.28 (m) H�

wogonoside 5.10 (d, J ) 7.8) 102.8 H-1′′ 3.50 (d, J ) 4.5) ΗR
3.91 (s) 63.3 -OCH3 isoleucine 0.87 (t, J ) 7.4) Hδ
7.95 (d, J ) 7.9) H-2′ 1.256 (m) Hγ
7.43 (t, J ) 7.9) H-3′ 1.542 (m) Hγ
6.50 (s) 101.4 H-6 1.992 (m) H�
6.59 (s) 106.9 H-3 aspartate 2.65 (dd, J ) 17.0, 8.6) H�
3.93 (d, J ) 7.7) H-5′′ 2.86 (dd, J ) 17.0, 3.7) H�

185.2 C-4 3.58 (dd, J ) 8.6, 3.7) ΗR
167.0 C-2 glutamine 2.12 (m) H�
108.1 C-10 2.45 (m) Hγ
132.3 C-1′ 3.72 (t, J ) 6.2) ΗR
158.4 C-7 glutamate 2.09 (m) H�
177.3 C-6′′ 2.35 (m) Hγ

sucrose 5.40 (d, J ) 3.8) 94.8 H-1R (Glc) 3.72 (dd, J ) 7.2, 4.7) ΗR
4.18 (d, J ) 8.9) 79.3 H-3 (Frt) proline 2.05 (m) Hγ
4.04 (t, J ) 8.7) 76.6 H-4 (Frt) 2.35 (m) H�
3.86 (m) 84.3 H-5 (Glc) 3.32 (m) Hδ
3.75 (m) 75.3 H-3 (Glc) 4.09 (dd, J ) 8.4, 6.6) ΗR
3.53 (dd, J ) 10.0, 3.7) 73.8 H-2 (Glc) lactate 1.33 (d, J ) 7.2) H�
3.45 (t, J ) 9.1) 72.1 H-10 (Frt) 4.15 (d, J ) 7.2) HR

glucose 5.25 (d, J ) 3.7) H-1R malate 2.52 (dd, J ) 16.4, 7.1) 43.7 H�
4.60 (d, J ) 7.9) H-1� 2.75 (dd, J ) 16.4, 4.5) H�

raffinose 4.97 (d, J ) 3.6) 101.0 H-1R (Gal) 4.30 (dd, J ) 7.1, 4.5) HR
5.44 (d, J ) 3.8) 94.6 H-1R (Glc) citrate 2.52 (d, J ) 17.5) 46.4 H-4
3.96 73.6 -CHOH 2.71 (d, J ) 17.5) 46.4 H-4
3.52 72.0 -CHOH 78.02 C-3

180.3 C-2
183.2 C-1
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nents facilitates the interpretation of class differences (e.g., for
biomarker identification), class-orthogonal divergence, and also
the prediction of the class membership of unknown samples,
which together increase the overall model usability (21, 22).
Therefore, OPLS-DA is more suited than PCA to differentiate
origins in cases where many factors can affect metabolite
profiles.

In the present study, a metabolomics approach combining
NMR spectroscopy with OPLS-DA was developed for discrimi-
nating the origins of Korean and Chinese herbal plant materials.
The method was first developed on Scutellaria baicalensis
samples and yielded superb results. The discrimination model
was statistically sound and allowed for identification of signals
underlying the differences between the two groups. Importantly,
validation by predictions on blind test samples gave a statistical
measurement of the reliability of the approach, which is required
for practical application. As a test of the wider usage, the same
method was applied to predict the origins of three other herbal
medical products. The excellent results suggest that this ap-
proach should be useful for the development of generally
applicable metabolomics tools for discriminating origins of
herbal medicines.

MATERIALS AND METHODS

Sample Collection. All of the plants were collected in person by
visiting the actual culture locations to guarantee the genuineness of
the origins of the samples. Chinese plant samples were collected during
two periods around September 20th and October 4th in 2006, and
Korean samples were collected during two periods around October 20th
and November 7th in 2006. A total of 38 S. baicalensis samples (roots)
were collected from six different locations in Korea (Yeosoo, Sooncheon,
Kwangyang, Koheung, Iksan, and Youngjoo) and six different locations
in China (Shenyang, Chengdu, Yanbian, Heilongjiang, Neimenggu, and
Huangshan). For Atractyloides japonica (roots), a total of 20 samples
were collected from two different locations in Korea (Kwangjoo and
Najoo) and two different locations in China (Hangzhou and Ne-
imenggu). A total of 33 Pueraria lobata samples (roots) were collected
from six different Korean locations (Iksan, Sooncheon, Kwangyang,
Geochang, Kimcheon, and Andong) and five different Chinese locations
(YanJi, YanBian, HeBei, ShenYang, and Guangxi). For Alisma orientale
(stem), a total of 25 samples were collected from four different locations
in Korea (Sooncheon, Iksan, Koheung, and Youngjoo) and four different
locations in China (Chengdu, Fujian, Shenyang, and Duping). The
collected samples were dried in the shade. All of the collected samples
were independently inspected and authenticated by an expert plant
systematician (Professor Chang Soo Yook, Kyunghee Universisty,
Korea). For S. baicalensis, used as the initial system, separate quality
control was performed according to the Korean Pharmacopoeia, and
all of the samples passed the test [baicalin contents > 10% measured
by high-performance liquid chromatography (HPLC); data not
shown].

Sample Preparation for NMR Spectroscopy. Dried samples were
ground with an electric blender, and 100 mg of each sample was
extracted with a CD3OD and D2O mixture (1:1) with 10 mM potassium
phosphate as buffer (pH 6.0). The extraction was carried out by
sonication at room temperature in a bath-type sonicator for 20 min.
Tetradeuterated trimethylsilanepropionic acid (TSP, final 0.025%) was
added as an internal standard. Any particulate material was removed
by centrifugation at 13000g for 1 min, and the supernatant was
transferred to a standard 5 mm NMR tube.

NMR Spectroscopy. One-dimensional NMR spectra were measured
on a 500 MHz Bruker Avance spectrometer equipped with a cryogenic
triple-resonance probe at the Korea Basic Science Institute (Ochang,
Korea). For efficient water suppression at the high Q probe, one-
dimensional nuclear Overhauser effect spectrometry (NOESY) pulse
program with water presaturation was used. All of the spectra were
recorded with 16 000 complex points at 25°. The time domain data
were Fourier-transformed, phase-corrected, and baseline-corrected

manually. The signal intensities were normalized against the intensity
of the 0.025% TSP signal at 0.00 ppm. The intensity values of all of
the spectra were saved in one text file for data binning.

Two-dimensional homo- and heteronuclear correlation spectra [het-
eronuclear multiple-bond correlation (HMBC), heteronuclear multiple-
quantum coherence (HMQC), total correlation spectroscopy (TOCSY),
and double-quantum-filtered correlation spectroscopy (DQF-COSY)]
were measured on a 400 MHz Varian Unity Inova spectrometer
equipped with a triple-resonance inverse detection probe. HMBC was
recorded with a one-bond J-filter and gradient selection in a nonphase-
sensitive manner and then processed in magnitude mode to obtain purely
absorptive lineshapes. All other spectra were recorded in a phase-
sensitive mode and processed with complex Fourier-transform in the
indirect dimension. The phases of the indirect dimension were corrected
manually for these spectra. All of the 2D NMR data were processed
with nmrPipe and analyzed by nmrview software.

Data Analysis. The spectra were integrated at every 0.04 ppm step
using an in-house-developed Perl program. The integral values were

Figure 1. NMR spectra and assignments of key metabolites from S.
baicalensis. (A) Representative 1H NMR spectra of S. baicalensis sample
extracts: (top) Korean S. baicalensis and (bottom) Chinese S. baicalensis.
(B) Unambiguous signal assignments for citric acid (left, DQF-DOSY and
HMBC spectra) and arginine (right, TOCSY and HMBC spectra) with 2D
NMR spectra. For citric acid, the H-4 doublelet (2.52 ppm) has a large
coupling constant (17.5 Hz) and, therefore, exhibits positive and negative
cross-peaks in the phase-sensitive DQF-COSY. These two peaks correlate
with two carboxyl peaks, C-1 and C-2, at 183.2 and 180.3, respectively,
giving rise to the four peaks on the HMBC spectrum.
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normalized against the TSP signal as an internal standard. The water
region (4.6-5.8 ppm) was excluded from the raw data for the analysis.
The data were formatted as an ascii-text file to be imported in statistical
software. For both PCA and OPLS-DA multivariate analysis, data fitting
was iterated right before the cross-validation coefficient starts to
decrease. SPSS (general statistical analysis, SPSS, Chicago, IL), Matlab
(STOCSY and OPLS-DA analysis, MathWorks, Natick, MA), SIMCA-
P, version 11.0 (OPLS-DA analysis, Umetrics, Sweden), Chenomx
(spectral database, Edmonton, Alberta, Canada), and Excel (data
conversion, Microsoft, Seattle, WA) programs were used for data
analysis. Statistical total correlation spectroscopy (STOCSY) was
implemented in Matlab, as described previously (21).

RESULTS AND DISCUSSION

NMR Spectral Acquisition and Metabolite Identification.
For the purpose of developing an efficient discrimination tool,
we began with a model system using Korean and Chinese S.
baicalensis. The plant has been used widely in both countries
for a variety of pharmacological activities and, thus, is of
significant socioeconomic value. Our initial trial to employ a
well-established marker metabolite, baicalin, for identifying
origins failed, because its content was not significantly different
between the two groups of samples (data not shown). Therefore,
we used a metabolomics approach to analyze a large number
of metabolites in a systematic way. To compare the metabolite
profiles between the Korean and Chinese samples, we obtained
one-dimensional NMR spectra (Figure 1A). The overall features
of the two representative spectra were quite similar, suggesting
similar major-compound contents, consistent with our analysis
of baicalin. As simple visual inspection of the spectra did not
allow for discrimination of the origins, we attempted to identify
the metabolites in the samples by analyzing the NMR spectra.
A variety of metabolites were identified on the basis of their

chemical-shift values (Table 1). Because the chemical shifts in
these samples could differ from the literature values, as a result
of either different solvent conditions or the presence of matrices,
we also confirmed the identification using two-dimensional
NMR spectra, including DQF-COSY, HMBC, and HMQC.
Representative unambiguous signal assignments for important
metabolites are shown in Figure 1B. We next investigated
whether these metabolites could discriminate the origins of S.
baicalensis samples.

Multivariate Statistical Analysis for Discrimination of
Origins. To make the most of the information contained in the
NMR spectra, we performed a multivariate metabolomic statisti-
cal analysis on the entire spectra. First, we performed PCA, a
widely used metabolomic profiling technique for plant metabo-
lites. PCA analysis showed some class differentiation, but there
were noticeable overlaps, possibly because of the structured
variation within each group (Figure 2A). To address this
problem, we used an OPLS-DA statistical approach. The
method, a supervised approach, would also enable us to verify
the statistical model by predicting the origins of test samples.
This step is integral to stringent validation of the statistical model
but has not been performed in most metabolomics studies
employing PCA analysis. The OPLS-DA model for distinguish-
ing sample origins was established using one predictive and
four orthogonal components (Figure 2B). The score plot for tp

and to shows a cleaner separation between the groups by the
first predictive component than the PCA-based approach. The
model had an overall goodness of fit, R2(y), of 95% and an
overall cross-validation coefficient, Q2(y), of 91%. Of the overall
R2(x) value of 87%, 60% was structured but uncorrelated to
the response and 27% was predictive, that is, responsible for
the class separation. These results show that the OPLS-DA
model can reliably differentiate classes even in the presence of
large structured noise and that OPLS-DA is more appropriate
than PCA in discriminating the origins of S. baicalensis samples.
In most metabolomics data analyses, compounding factors
orthogonal to the variables of interest may obscure the intended
class separation. Therefore, OPLS-DA should give better
separation along the particular dimension that one is interested
in. Still, the presence of large unstructured noise would hamper
the separation for OPLS-DA.

Statistical Validation of the Model. In comparison to PCA,
OPLS-DA is a supervised method and the goodness of fit

Figure 2. PCA and orthogonal projections to latent structure discriminant
analysis (OPLS-DA) of Korean and Chinese S. baicalensis groups. (A)
Score plot for PC1 and PC2 of PCA. (B) Score plot for OPLS-DA. 4,
Chinese S. baicalensis; 9, Korean S. baicalensis.

Figure 3. Statistical validation of the OPLS-DA analysis result by “y-
scrambling”. A total of 200 permutations were performed, and the resulting
R2 and Q2 values were plotted: 4, R2; 9, Q2. The solid line represents
the regression line for R2, and the dashed line represents the regression
line for Q2.
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and the predictability of its result can be subjected to
validation to test the possibility of correlation by chance.
This statistical validation step is especially important for
metabolomics data, because most of them have a larger
number of observations than variables. For the OPLS-DA
method, we can apply “y-scrambling” validation, where the
y variable values are randomly shuffled and the models are
rebuilt and analyzed. We performed this permutation proce-
dure using the PLS-DA model with the same number of
components. Nevertheless, the results are valid, because the
solutions of PLS-DA and OPLS-DA are the same, with their
main differences being the improved model interpretation of
the latter. The procedure amounts to redistributing the class
memberships of each sample randomly and observing the
decrease in the predictive power and goodness of fit. We
performed 200 rounds of random permutations of the y
variable, which resulted in a substantial decrease in both
parameters (Figure 3). Moreover, the extrapolated value of
the Q2 regression line was -0.589. Generally, an intercept
value larger than 0.05 indicates overfitting in the original

model. Therefore, these analyses show that our model is
statistically valid and that the high value of predictability
does not arise from overfitting.

Marker Compound Identification and Variable Impor-
tance Plot. Having achieved efficient separation and statistical
validation, we explored the OPLS-DA model to identify the
marker signals underlying the separation of origins. For this
purpose, we constructed a STOCSY plot. While other
correlation spectroscopic methods correlate peaks by physical
coherence transfer during the mixing time, STOCSY does
that in a statistical way by observing correlations in the peak
intensity changes across the different samples used in
metabolomics studies. In its one-dimensional format, it is
represented by a line plot combining the modeled covariation
(pp) with the modeled correlation (p(corr)p) in one graph (21).
One of the advantages of this combination is that the modeled
covariation will maintain the line shapes from the NMR data
in the loading plot. This is an advantage, because it is easy
to observe how close the differentiating metabolite is to the
noise level. The correlation, meanwhile, will indicate the size
of separation, which can also be compared to other metabo-
lites. These analyses have been applied successfully to other
types of data [e.g., gas chromatography/mass spectrometry
(GC/MS) in a scatter plot manner] in a recent publication
that one of us co-authored (22). The STOCSY plot shows
that the signals at 1.70, 1.90, 2.54, 2.72, and 3.72 ppm make
the largest contributions to the differentiation of the two
sample groups (Figure 4A). On the basis of the signal
assignments above, it was easy to find that the signals belong
to citric acid or arginine. To demonstrate the actual biased
distribution of the signals from these marker metabolites in
one sample group, we built a plot with the intensities of one
of those signals in the Chinese and Korean samples. Figure
4B shows that the signal at 1.90 ppm from arginine is
consistently much higher in the Korean samples than in the
Chinese. The differential contents of these compounds are
also clear in the enlarged view of the representative spectra
of the Korean and Chinese samples (Figure 4C), demonstrat-
ing the validity of the STOCSY analysis.

Validation of the Working Model by Prediction. Another
critical step in a statistical multivariate analysis is to validate
a model on samples not used in building the model itself.
The process can be performed by leaving some of the data
out (a test data set) and constructing new models with only
the remaining data set. In this case, the test samples can be

Figure 4. Identification of marker signals responsible for differences
between Korean and Chinese S. baicalensis samples. (A) STOCSY
spectrum from the OPLS-DA model for Korean and Chinese S. baicalensis
samples. (B) Relative peak intensities, hence, contents for the 1.90 ppm
signal in all of the samples. (C) Enlarged view of 1H NMR spectra for S.
baicalensis sample extracts showing the regions for the signals of citric
acid and arginine: (top) Korean sample and (bottom) Chinese sample.

Figure 5. Prediction of origins of the Korean and Chinese S. baicalensis
samples using the OPLS-DA model. Filled red triangle, Chinese samples
(training set); filled black box, Korean samples (training set); blank green
circle, results for the blind test samples. The dashed line represents the
cutoff for the class membership prediction (7).
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considered unknown samples, whose class memberships will
be predicted blindly by the model. One can compare the
predicted memberships to the original values and thereby
evaluate the accuracy/reliability of the metabolomics model.
This method was used as a stringent judgment tool in recent
clinical metabolomics studies for the diagnosis of heart
disease and drug toxicity prediction (7, 23). For the prediction
test, we randomly left out a total of 11 test data (4 Korean
and 7 Chinese samples) and built the OPLS-DA prediction
model without them. The approach yielded similar statistical
characteristics to those obtained by cross-validation using
the entire data set (data not shown) and was able to correctly
predict the origins of the 11 test samples (Figure 5). The
solid prediction results with a large number of test samples,
as large as one-third of the total number of samples used in
the model, show the reliability and robustness of the
prediction model.

Application of the Approach to Other Herbal Medical
Products. Having developed the statistical approach using

the S. baicalensis system, we determined if it could also be
applied to differentiate the origins of other herbal medical
products from Korea and China. We performed the same
sample-handling and data analysis on three other herbal
medicines, including Alisma orientale, Atractyloides japonica,
and Pueraria lobata. All of them showed good separation in
the score plot for tp and to without overlap (data not shown).
As a stringent test of the practical applicability, we performed
a blind prediction test for all three herbal medical products.
We obtained 100, 100, and 92% accuracies in the prediction
of origins of the A. orientale, A. japonica, and P. lobata
samples, respectively (Figure 6). These results show that our
method is robust and could thus be applicable to the
discrimination of other herbal medical products. Although
the analysis with P. lobata showed less than 100% accuracy,
a larger sample size would allow for a more reliable statistical
model.

CONCLUSIONS

In the present study, we applied NMR-based metabolomics
combined with OPLS-DA multivariate analysis to develop an
efficient tool for discriminating between Korean and Chinese
herbal medicines. Although our data do not cover all of the
possible diversities of the herbal medical samples, the robust
statistical validation results, test sample prediction, and ap-
plicability to samples collected in various places at different
times suggest that our approach could be effectively used for
testing actual market samples. Additionally, the marker me-
tabolites identified here could later be used for rapid differentia-
tion of Korean and Chinese S. baicalensis samples without the
need for statistical analysis. Because our approach was also
successfully applied to three other herbal medicines, we believe
that it might be used in the development of a generally
applicable tool for determining the origins of herbal medical
products.
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